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ABSTRACT

This paper conéiders problems which accompany thermionic
emission of electrons from a hot body surrounded by a plasma.
In the absence of other mechanisms, an elecﬁric potential is
established at the surface of the body through the balance of
thermionic emission and ;ccretion of electrons from the
external plasma. Analytical solutions are obtained for the
electric potential field and the electron denéity distribution
around the body. A possible applicatiod of this analysis to

objectiyin space is indicated.
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emitted electron flux is of the order of 10

I. INTRODUCTION

An object in space may become hot while approaching a
hot stellar body like the sun, or while entering a dense
atmosphere like that of the earth. Long before such metallic
objects mglt, evaporate, or ablate, they may acquire temperatures
which are sufficient to cause a copious emission of electrons
from the surface. Therefore, the temperatures. lower than, and
in the neighborhood of, the melting point are of interest to
us in this paper. As a matter of convenience and without serious

7
loss of generality, we will regard iron as a reference substance

composing the objects in space, and hence consider temperatures

lower than 1600°K. The analytical formulae are, however,
applicable to any other specific case of a surface capable of
thermionic emission.

Thermionic emission is very sensitive to temperatures; the

and lO18

ed el Flux ic of 12

electrons/cmz—sec at surface temperatures of 1000°K and 16OOOK

réspectively,from a material of work function W, = 3 ev. The
¥

emission of electrons from the object's surface leaves a positive
surface charge. A great majority of the emitted electrons
destribe ballistic orbits and return to the surface, while a

certaln number of those in the high energy tail of the energy

spectrum are able to escape from the potential fie;d of the
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object. The positive charge at the object's surface is
established by these escaping electrons, and the rate of elscape
of the emitted electrone decxeawss with an inerease in %he
surface potential. Furthermore, if the object is surrounded by
a plasma, the plasma accretion alonevhas a tendency to impart
a negative charge to the object's surface. Therefore, a steady
potential can be éstablished-at the object's surface when the
net negative charge leaving the object due io thermionip emissiah
is completely replenished by .the net negative charge brought‘to
the surface by the accretion from the surrounding plasma. The
magnitude of the equilibrium surface potential is then determined
from the balance of the plasma accretion current and the escape
component of the thermionic emission current.

Tberelare other mechanisms (Chopra 1961).in which an objecg
may acquire an electric charge. An effect of considerable interest
is connected with the photoelectric emission and accretion of

electrons. The photoelectric effect is important for objects on

the day side of the earth and for surfaces exposed to the sun.

In certain cases, it is comparable to, and at times may even become
v .

more significant than, the thermionic emission. We will, however,
limit the analysis of the present paper to only thermionic emission
and leave these other considerations for a subsequent paper.

The incoming plasma electron -£lux and the thermionic electrons

e n
e

o — R _ATNRELEF



A i i ik ek 33 B b |

1 —5-

congtitute a plasma cloud w;th most of the contribution to‘the
electron density in the cloud coming from the ballistic component
of the emitted electrons. This plasma cloud screens the electric
potential on the body. An analytical expression for the density
distribution in terms of potential ¢, and work function wo'is
obtained by solving the equations of Poisson and the conservation
of energy and momentum. -This analytical expression is substituted
back in the Poisson equation which is then solved numerically to

vield potential distribution as a function of distance from the

surface.
’ It may be mentioned here that the p;oblem considered in this
paper bears a certain analogy to the problem of the exosphere.
In the exosphere problem, the particles are projected outwards
corresponding to the temperature of the base layer. One of us
(C.S. Shen) has successfully applied (Shen 1363) the present
analvsis (after some modifications) to the structure of the
planetary exospheré, and has obtained an analytical éxpressioh

for the density distribution.

¥

IT. FORMULATION OF THE PROBLEM - BASIC EQUATIONS

Let us consider a spherical object with an equilibrium

surface potential v, and surface temperature T, surrounded by
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scréening charges due to thermionic emission and a rarefied
extexrnal plasma with electron density n_ and ion density ne/Z
(where Ze is the ionic charge at a temperature Tsl When the
thermionic emission is stronger than the plasma accretion and

the object is moving slower than the mean thermal speed of the

77T plasma electrons (~107éﬁ/sec)'Eﬁéw§6féhti£I”51f) and the

screening electron density p(r) are, to a first degree of

approximation, spherically symmetrical, and are given by

72o(r) = - %o o (x) (1)

-
~

' -10
where e = 4.8 x 10 ~, e.s.u. is the electron charge, e, = 1
is the permitivity of the medium, and r is the radial distance
measured from the center of the spherical body.

The screening electron density p({r} consists of three parts’

p(x) = pb(r) + oesc(r) + pp(r) . (2)

Here pbkr) is the'ballistic component which is due to the electrons
emitted from the surface with velgcities less than the escape

velocity:;these particles describe ballistic érbits in the electric
poténtial field of the body and return to the surface. The-escape

component pesc(r) is due to the electrons emitted with velocities
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exceeding the escape velociﬁy; these particles do not return
to the cﬁarged body. The third component p(r) is due to the
accretion from the surrounding plasma. Among these pb(r)
contributes about 90 percent to the local electron density (as
can be seen from later>calculations). Also, in the éteady state
condition, the escape component of the thermionic electron flux
is equal to the incoming -plasma accretion flux. Therefore, to
simplify one of our later calculations, we can set pesc(r) = pp(r)-
Assuming that the electrons inside the metallic body have
velocities given by the Fermi distribution law, the number of
electrons having velocities in the range (V, v + d;) and hitting

a unit area of the surface (inside) is given by

! 4m® v vtdv dv

3 = X r t . ‘
Jlv) he o (E-Ef)ﬂ<T+l (3)

where

E = l/2m(vr2 + vtz)
;nd m=9 x 10—28g is the electron mass, h = 6.27 x 10—27erg/sec
is the Planck's constant, E; is the Fermi enerqgy, and V.- and vt
are the componentsiof the velocity Vv in directions parallel and

transverse to the radius vector 7¥.

If we denote the velocity of the electron at the position
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r, (r>R), by u(r), then the principles of conservation of energy
and éngular momentum require that
ru_ = Rv " (4)

' and

l/?m(urzfutz)—em(r) =_l/2m(yr2+vt2)4WO—Ef-emo(r) (5)

where R 1.5 the radius of the body.

Equations (4) and (5) yield

2 2 R2 2 2
ur = vr +(1 - r2)vt - ﬁ'{e(wo“m) + Eg + WO} (§)
which provides a stringent condition for an electron emitted :

rom the surface to reach the radial distance r. Only thosef

electrons with initial velocity V. satisfying the inequality |

2 R2, 2 2 '
v+ (1 - ;Z)Vt - = {e(mo - o) +Eg+W,} 20 (7)
can reach position r. These eleétrons may be divided into
two categories:

1) Ballistic Component: These electrons satisfy
Equation (7) and have velocities Tess than the velocity of escape

such that

2
1/2tv” - W = Ep < eq, (8)




and hence describe ballistic orbits.

2) Escape Component: These electrons satisfy Equation?(?)
and have velocities equal to or exceeding the velocity of escape
such that

2
1/2mv - W - E_ 2 en (9)
o £ o

and describe escape trajectories.
These classifications are important in the evaluation of
electron density and may be illustrated diagrammatically as

in Figure 1. Curves I, II, and III describe equations

2 _ 42 )
Vr + Vt2 = (:,ﬁ) [Ef + WO + ecpo] (10)

2 2

, :
v+ (- a?)vt = (R E; + W, t elog - 9}] (11)
and

2 _ 2.
v, = @lEg + W1 . (12)

where o = R/r. These curves represent a circle, an ellipse
and a straight line in the same order and distribute the thermionic
electrons in various velocity domains.

The electrons with velocity domains external to the circle <

and the straight line - region A - are the escape electrons

which do not return to the body. The electrons with velocities
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in the domain enclosed by the circle and the ellipse = region B -
belong to the ballistic group with more than the necessarxrradial
componant of the velocity to reach the position r. These electrons
are counted twice in calculating the electron density distributién
and make a dominant contribution to the local electron pophlation.
The electrons corresponding to region C - enclosed by the ellipse
and the straight line - also belong to the ballistic group but

do not possess enough radial velocity to reach position r.
Therefore, these particles do not contribute to the local electron
density. The strgight line represents the least value of the
radial velocity that an electron must acquire before it can
surmount the surface barrier. Therefore, the electrons corresponding
to region D' in Figure 1 are not able to get out of the surfacebof

the metallic body.
III. ELECTRCON DENSITY AS A FUNCTION OF POTENTIAL

The contribution of the thermionic electrons with the

initial (Jjust inside the surface) velocities in the range

-

(v, v + dv) to the electron popula}ion in a shell of radii r
and r + dr is determined by the product of the corresponding
electron flux J(v)av and the time dt = dr/ur spent by these

electrons in traversing the thickness dr of the shell. This

contribution dpth(r) is given by
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oy, (¥) = ol Iav ' (13)
u >0 Uy

which with the help of Equations (3) and (6) yields the
expraession for the thermionic component pth(r) of the electron

density at position r,

2T, + I

a 1

pen () = an &) o [ 21 (14)

where

|

-

l . )
3 v 2ema?)v 2= (2/m) (B g e (o5 11

n ’ v v dv dv
[ rt r. t

.
/ZEe{m(vr +vt2)—2Ef}]2kT+l]

Region B , (15)
and
" : v v dv _dv
_ rt r t — =
f 1/2 +v ~2E 2kT
2 0 v Arasdd 2-(2/m) (B _+e (v ~o) 1] / [e{m(vr g ) m2Eg /2K +1]
r t e o o}
Region A (le6)
and the limits of the integrals Ih and 12 are set in accordance
with Eguations (10) - (12) and Figure 1, and the weight factors are

inserted as explained in the preceding section. Including the

contribution of the external plasma, the total electron density p(x)

R
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at the position r becomes

plr) = p_ (x) + p () = 8n(;n/h)3a2(xl + 1) . (17)

On introducing the following dimensionless parameters

2
X< = mvr2/2kT ; Y2 = mvt2/2kT e = Ef/kT (18)

and

a=[E, +W +elo, - 9)IAT

Eguation (17) reduces to

3/2 2 XYdXdy
(r) = 8m(2mxT) a” [ Ziy2- 19
P h3 J [X2+(l—a2)Y2—a]l/2[eX Y €17 (19)
X2+(l-a2)Y2—a20 . ’

But,

2 2
X +Y¥Y - ¢g=z2za-¢ 2 WO/kT >> 1

and, therefore, we can neglect the unity term in comparison

with the exponential term in the denominator of Equation (19).

¥
Furthermore, on setting

x2 + (l—az)Y2 - ¢ - (Wb/kT) = 22 i '(20)

\
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and

(1 - o) Y2 /%) = tan & (21)

in the last eguation, and after some simplification, the

expression for the total electron density p(r) reduces to

plr) = 2(2mkT/h 2y3/2 - [Wgte (ng-g) }/KT

: 2 2 .2 .
[ 1 - 1o (/e 2)t/2e7R7e (om0 /RT(x7-R )] (22)

which is expressed as a function of the potential of(r) = o.

Y

IV. REDUCED POISSON EQUATION

Substituting for the electron density p(r) from Equation (22)

in the Poisson Equation (1) and introducing the dimensionless
guantities

§ = ey/KT
and ‘ | (23)

W /KT ,

D
I

we obtain

Q;

lm

/r2

) '.. - - - 2 2_ 2
2 \ am %6 o w)Ll—{l—(R/r)z}l/ze (yo=¥)R7/(r“-R )]

')
x

e
4

Q

(24)
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where

A = -2(e/c) (2rm/n2) 372 &8 | (25)

and the boundary conditions of the problem are

y(R) = ¢ (26)

at r

R, and

(27)

I
o

§ (=)
- at r = o,
In some cases of interest to us, we will find that the
equilibrium potential energy ew is much greatgr than the thermal
o energy XT corresponding to the surface temperature T. This would
then enable us to neglect, to a first approximation, the second

¥
term in Equation (24), and hence we have

72 y(r) = Be X | (28) -

-

‘with

1/2
B = A(kT) / ,and X = ¢y - ¢ . (29)
. o

Equation (27) is identical to the ‘so-called isothermal equation

which has been solved for various boundary conditions and applied

extensively to the problems‘pértaining to stellar structure by

i
ii
e
4
b
TE:
Ed
:3
;
3

Chardrasckhar (1939). .
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V. DETERMINATION OF SURFACE POTENTIAL

The equilibrium value of the surface potential is'determinea
from the balance of the escape component of the thermionic
emission current and the plasma accretion current. The plasma
accretion current consists of the electron and ion components.

In the absence of a surface potential Py s the ion accretion
current is smaller thgnuthe electron accretion current by a
factor of the order of (me/mi)l/z. Therefore, only the relative
initial magnitudes of the thermionic escape current and the
plasma electron accretion current need be considered,vand the

ion accretion current may bé neglected. Then, the surface
pofential Vo is positive if the initial thermionic escape current
is greater than the initial electron accretion current. It may,
however, become necessary to include ion accretion in consideration
of the magnitude of the'surfacg potential 0. if the latter is
negatiye.

Lé; us first consider the case of a positive surface

potential. Then, the thermionic escape current is given by
¥ |

. vrvtdvrdvt

- 2 - .
(m(v * + vt2) 2B£}/2KT

Tege = BR /m ] (30)
e i

1

Region A
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As mentioned in Section II, the electrons in region A of
Figure 1 must have radial and transverse velocity components

such that

v 2 > (2/m) (E. + W )
r £ o)

and
v + v 2/m E. + + .

Coso@/m) (B ¥V, T ewg)
Therefore, the expression for the thermionic escape component

may bg rewritten as

J2/m) (B, + W+ ew,)

Jose = 8nR2(m/h)3EI vrdv¥fw Vdet Y
: TiaivgZ T v ) - 25g)/BT,y
JTZ/RY (Eg + W) JZ7mi (g T W, % €0g)
(31)
e @ | Otdv

+ [ vdv f
r X 2 2
o e—{m(vr + v 4 - 2Ef}/2kT+1!

.....

e —————— T
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Once. again we can neglect the unity terms in comparison
with the exponential terms in the denominators of the integrands
in Equation (31). After carrying out the integration and making

some simplifications, Equation (31) reduces to

Jese ~ (4ﬂRkT)2(m/h3)(l+¢)e-(¢o+e) - (32)

For bodies moving slower than the mean thermal speed of s
the plasma electrons, the electron accretion is symmetrical

about the body, and is given by

2 2 (T/T_ )Y
Jo = 5% nongver’, (M/Te! Vo : (33)

when ng and ve are the number density and the mean thexrmal

speed of the plasma electrons, and Mo is the sticking coefficient
defined as the fraction of the incident electrons transferring
their charge to the body. In estimating the plasma accretion

current Jp we further note that the ion accretion is further

: -{T/T i
reduced by a factor e (z/ P)ko and becomes negligibly small as

compared to the electron accretion. Hence,

=~ _ 27 ' 2 (T/T )Y
o B9, = 5T mangvrt TR o (34)

J

which, when combined with Equation (32) in the condition of

equilibrium,
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J =J , (35)
esc p
yviclds

S T1 + /7T W _

ot v/ oV 24m, (xT) 2,78 2_-9 .
. e e _ 29 T e (36)

1+ ¢ = n v h3 =6 x 10 n v
Vo NeleVe MaVe

where T is expressed in electron volts.
if, on the other hand, the surface potential @, is negative,
; s . /7)) v |
the ion accretion current is enhanced by a factor of e p’ "o .
wWith Iwol larger than a few tenths of an electron volt, the
enhancement factor el¢0| may be large enough to counteract the -

/2

1 ‘ ) .
effect of the reduction factor (me/m,) so that the ion current
: 1
may by no means be negligible. In these circumstances, we must

include the term

2 =(T/T,) v
= P’ Yo
3, (2ﬂ/3)niziniviR e (37X

in calcﬁlation of Jp.. In writing Equation (37) we have assumed
that the ion accretion is also symmetrical about the body. If,
however, the speed of the body exceeds the mean thermal speed
offthe plasma ions by an order of‘hagnitude, the ion accretion
current (Equation (37)) is reduced by a factor of 1/2. The

corresponding electron accretion current is given by




(2/Tp) 4o (38)

Jo = (21/3) ﬁen Ve Q e

Therefore, the expression for the plasma accretion current |

reduces to

&
1l
(o

(a3} e l 2 - ;
e 1 e e ‘e iV e T |

o)
e

(39)
In the calculation of the thermionic escape current we
nav first remark that the negative surface potential in our
problem is only a fraction of a volt. It may also be noted that
a negative surface potential, however small, enables all the
emitted electrons to escape. Hence, the thermionic escape

current is approximately given by

—_ . 2 ' 3 -f
Tese = (47RXT) (m/h7)e ° (40).:

Finally, in the condition of eguilibrium (Equation (35))

Eguations (39) and (40) yield

n.t m/ Yo -3 (m /m ) / - (T/T )wO = 24w(m /h n.v )(kl) e =9 -

6]

M - .
& 6 x 1029(T2/neve)e o . (41)

L e
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VI. DISCUSSION

In the preceding sections, we have formulated and analyzed

-

thic problem of the screening of the electric potential on a hot
spherical obhject surrounded by an external plasma. It is assumed

that 1) the spherical body acquires the electric potential in the

processes of the thermionic emission of electrons from the surface

of th

)

surrounding plasma, and 2) the surface potential and the

istribution of the potential and the electron density in the

Q,

ening cloud are spherically symmetrical about the object. The,

o

oha
W

[{]

basic regquirement to satisfy these assumptions are that i) the
surface of the spherical object is at a uniform temperature and
1i) the object is either at rest or it moves with a speed that is
small compared fo the mean thermal speed of the plasma electrons.
These reguirements set restrictions on the exact application of

the results of the present analysis to actual objects in space.

jon

The present analysis, nevertheless, provides, even in such cases
where the above-mentioned assumptions do not strictly hold, at

least an order of magnitude estimate of this phenomenon in front

' of the hottest part of the object.

The awpplications of our analysis may be found in objects

object and the accretion of the charged particles from the.
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entering a planctary atmosphere or those approaching sufficiently
- close to a hot star. A space vehicle entering the earth's

-

- . (o)
atmosphare encounters stagnation temperatures of the oxder of 1500 K.

&

: . : o
meteoric obiccts acquire surface temperatures above 1200 K.

}..J

s
La e

+,

oniz

Hh

the cometary heads and certain cometary

3
ct

cion in fro le}

o
ct

-4

tails which is not undersﬁood as well, may berattributed in part

to the .nlar heating of the metallic content of these objects.

In general; the surface temperatures of the above-mentioned classes

of objects are not uniform. Due to the variety of the types of

- ‘ such objects and uncertain available data, we will not make any

attempt to apply our analysis to-any specific case of the above-

mentioneé-space objects. Instead, we will illustrate our theory

by considering a hypothetical spherical object heated to a uniform

surface temperature and surrounded by a plasma of electron densipy
3,3 ' °

n, o~ 107 /er” at the equil;brium plasma temperature Tp ~ 1000°K (0.09 ev)

Two vzlues of the work function and five values of the surface

temperature, viz.,

W = 3.0 and 3.8 (electron volts)
o

and

0.04, 0.06, 0.09, 0.13 and 0.15 (electron volts)

+3
1t

are considered to illustrate the influence of these parameters
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on the nature of the

common value of n = 7

electron cloud around a hot object. A

= 0.1 is adopted for the sticking

e i
coafficients. Since these surface-plasma parameters appear in
a logarithmic term, any departure from this value for the

sticking coefficients is not likely to seriously affect our

result.
The suilibrium value of the surface
determined by the surface

of the surrounding

and temperature Tp

thermionic emission of electrons is
balance of the electron and ion accretion

surrounding plasma establishes a negative

potential 0, is

temperature T, the electron density

plasma. At low values

small, and hence, the
currents from the

potential mo on the

object's surface. The numerical value of @ is always a fraction
(< 0.05) of a volt because even this small value of @ is large
to increase substantially the ion accretion current and

the electron accretion current to off-set the relative

> : <
effect of the factor (me/hi)l/“. . _
Table 1
SURFACE POTENTIAL OF AvMETALLIC BODY
) ‘o) O 3 .
W, = 3.8ev T, = 0.0%ev (1044 K) n, = 10%/c.c n= 0.1
T{ev) mo(volt)
0.04 . -0.1691
0.06 -0.1688
0.09 +0.0963
0.1% +0.48957
0.13 +0.8430
0.15 +1.1340




and

, i) T = 0.1l ev: WO = 3.8 ev; and wo = 4.0
respcctively. The variation of potential with distance has
the following characteristics:

1) The nature of the profile of the potential distribution
curve is indevendent of the set of the parameters used. The
§otential falls very rapiély with distance from the object,
and reduces to 1/3 of its surface value at a distance of
approximately 2.3 and 1.7 cm in Figures 2 and 3 respectively.
2t a distance of about 8-10 cm the potential acquires an almost
sero value and the surface potential of the body is completely
shielded by an electron cloud of this dimension.

2) The inclusion or the disregard of the second texrm inside
the parenthesis of-Equation (42) does not seem to matter in the
calculation of the potential distribution. It is apparently due
to the very rapid decrease of potential with distance from the
object which reduces this texrm to a second order of exponential
in ¢ - Vo thereby ‘making it negligible in comparison o the

12
The electron density in the electron cloud surrounding the
bodv is caicuzated from Eguation (22) by substituting in it the

valuecs of the potential distribution obtained from the solution




the thermionic-emission and the electron-accretion currents;

the ion-accretion current having been reduced to a negligible

value by the joint action of the positive potential and the

/2

- 1 i . .
factor (me/mi) Table 1 lists values of 9 corresponding

+to the several values of W and T.
. O

Equation (24) can be reduced to a dimensionless

differential equation, g

- ~ = : - - )
14 2 4y 2, 1/2 = (y_-1) -2.211/2 (g ~y)/(x°-1)
= = 2y o D o (1 o
X2 ax (X dx) AR \KJ.) e . Ll ( X ) _l e
(42)
where X 5-%. The variation of potential with distance from the

sprerical hot body of l-cm radius is calculated by solving
Equation (42), and the results are illustrated in Figures 2 and 3.
The two curves representing the inclusion and the exclusion of

b

LY

the second term inside the parenthesis of Equation (42) for the set

!

of parameters T = 0.09 ev, W_ = 3 ev and y, = 5.43 are shown in -
Figure 2, while'Figure 3 exhibits the profile of the potential

distribution, with the inclusion Qf the second term in Equation (42)

[q]

in the numerical calculations, for the two sets of parameters:
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of Eguation (42). The results of this computation are given in
Figures 4 and 5. Tigure 4, like Figure 2, includes two curves,

cne of these corresponds to the inclusion of the second term

} ]
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4
1

s term. The set of parameters used in the computation of

4

n

hese curves have the value T = 0.09 ev: Wo = 3 ev; ¢o = 5.43.

et

The den. ity distribution curve in Figure 5, as in Figure 3,

corresp»onds to the sets of parameters having values

i) T = 0.0% ev; W =3 ev; §_ = 5.43
o o

ii) T = 0.13 ev; W_ = 0.38 ev: y, = 6.5

and the numerical calculations are'based on the inclusion of
the second term in Equation (22). These curves bring out the
foliowing features of the variation of the electron density'
with distance from the object:

1) There is a considerable increase of electron density
in the immediate vicinity of the body.

2) The electron density decreases very rapidly with
distance from the body. |

Unlike in -the estimates of the potential distribution,

- 2)
fhe inclusion or exclusion of the second terxrm within the
— » - ) - A 3 N
varenthescs of Eqguation (22) in the computations of the electron
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estimates

of the el
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(see Figure 4). The

+the electron density

0]
o]

an the ambient value.
this term in order to

ectron density.

ppears to make a ‘subst

Ky for his hel

antial difference in these
neglect of this texrm yields a
At great distances which is
Therefore, it 1s necessary to

arrive at the correct estimhtes
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CAPTIONS TO FIGURES

Tigure 1 - Curves I, II and III are the plots of v, and v, in
cccordnnce with the Equations (12), (13) and (14) respectively,

pe

and define .the velocity domairns of the thermionic electrons.

Elecirons in domain A form the escape-group, whereas tHose in

Gomni -+ B and C describe hallistic orbits with sufficient and

insufficient energies respectively to reach position x.

Figure 2 ~ Plots of iy (x) against r/R. (W = 3ev; T = 0.0%ev;
o

and ¢O = 5.43.) Solid line =

/2 2.1/2 2 2 2
7%y = A(kT) (1-{1-(R/x) V  exp(y=¢)F /(xr =R ) Jexp (y={,) -

1/2
Dotted line = 72¢ = A(kT) /

Figure 4 - (W = 3ev; T - 0.0%ev; and $o = 5.43.) Plots of

iog_ o(r) against r/R. Solid line =

1/2 22 2
/ eXP(Q—v;)R /(x"=R7) Jexp (y-y ) -

Tigure 5 - Solid line = W_ = 3.8&v; T = 0.13 3v; and y, = 6.50.

Shseed line = W = Zev; T = 0.0%ev; and Vg = 5.43. -~
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